Thread Rating:
  • 11 Vote(s) - 3 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Atom, Fisyon, Füzyon, Zincirleme Tepkime (Reaksiyon) Nedir?
#1
Oku-1 

Atom, Fisyon, Füzyon, Zincirleme Tepkime (Reaksiyon) Nedir?

Bölünme ( fisyon )

Bir atom çekirdeğinin bölünmesi olayına ‘’bölünme’’ ( fisyon ) denir. Alman bilginleri Otto Hahnve Strassman, 1938 yılında yaptıkları deneylerde, yavaş nötronların ( düşük enerjili nötronlar ) bir U–235 ( uranyum–235 ) izotopunun çekirdeğine girdiği zaman, bu çekirdeğin birbirine hemen hemen eşit iki parçaya bölündüğünü ve bu bölünme sonucund çok büyük bir enerjinin açığa çıktığını gözlemlediler. Bu deneysel sonuç Albert Einstein’nın 1905 yılında ortaya koyduğu, enerji ve kütlenin biribirine dönüşebileceğini gösteren, meşhur E= mc2 formülünün doğruluğunu göstermiştir. Bu formülde ‘’m ‘’ maddenin kütlesini, ‘’c ‘’ ışık hızını ve ‘’E ‘’ de m kütlesinin tamamen yokolması halinde açığa çıkacak olan enerji miktarını göstermektedir. Buna göre bir kilogram U-235’in bölünmesinden yaklaşık 3000 ton iyi cins kömürün yanmasından elde edilecek enerji elde edilebilir.

Birleşme ( füzyon )

Ağır çekirdeklerin parçalanması sonucu enerjinin açığa çıkacağını yukarıda görmüştük. Bunun yanında ‘’ Birleşme ‘’( füzyon ) denilen diğer bir nükleer olay sonucunda da enerji açığa çıkmaktadır. Bu olay, hafif çekirdeklerin, tek bir çekirdek meydana getirecek şekilde birleşmeleridir. Birleşme enerjisinin en belirli örneğini hidrojen izotoplarının ( döteryum ve trityum ) birleşmesi teşkil etmektedir. Bu birleşme sonucunda enerji elde edilmekte ve daha ağır bir çekirdek oluşmaktadır. Bu nükleer olay, ancak milyonlarca derece ısıda meydana gelebilmektedir. Bu sebeble bu termonükleer enerji, ancak askeri amaçlarla kullanılmak üzere denenmiştir. Hidrojen bombası da denilen termonükleer bir bomba yapmak için önce bir bölünme olayı yaratmak, yani atom bombası patlatarak birleşme için gerekli olan ısıyı sağlamak gereklidir. Bundan dolayı bir termonükleer bombanın tetikleyicisi bir atom bombasıdır. Birleşme enerjisinin barışcı amaçlarla kullanılması alanında da bilimsel ve teknik çalışmalar uzun yıllardan beri devam etmektedir.

Açığa çıkan enerji miktarı

Yukarıda bölünme be birleşme olayı sonucunda enerjinin açığa çıktığına değinmiştik. Karşılaştırma yapılması amacı ile aşağıdaki hususlara bir göz atmakta yarar vardir; bir kilogram kömürün yanmasından yaklaşık 6,8 kilolvatsaat, bir kilogram petrolün yanmasından yaklaşık 7 kilovatsaat, buna karşılık bir kilogram U-235’in bölünmesi sonucu açığa çıkan enerji yaklaşık 21 milyon kilovatsaat’tir. İşte, üretilen enerji miktarları arsındaki bu müthiş fark, insanlığı nükleer enerjiden askeri ve barışcı amaçlarla faydalanma yoluna götürmüştür.

Atom

Atom bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapıtaşıdır. Atom yunancada bölünemez anlamına gelen atomustan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünel mikroskobu (atomik kuvvet mikroskobu) vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

Bir atom, sahip olduğu proton ve nötron sayısına göre sınıflandırılır: atomdaki proton sayısı kimyasal elementi tanımlarken, nötron sayısı da bu elementin izotopunu tanımlar. Her elementin radyoaktif bozunma veren en az bir izotopu vardır.

Elektronlar belirli enerji seviyelerinde bulunur ve foton salınımı veya emilimi yaparak farklı seviyeler arasında geçişlerde bulunabilirler. Elektron, elementin kimyasal özelliklerini belirlemesinin yanı sıra atomun manyetik özellikleri üzerinde de oldukça etkilidir.



Atom'un tarihi


Aristoteles'in maddeye bakışı kendinden önce yaşamış olan filozoflara olan tepkisini ifade eder. O, Empedocles'in düşüncesine katılmış ve her şeyin dört ana maddeden yapıldığını savunmuştur. Bu dört ana madde ateş, su, toprak ve havadır.

Bu dönemi izleyen çağlarda bu düşüncelere bir ilave yapılmadı, ilk kez 1803 yılında John Dalton modern atom kavramını ortaya attı. John Dalton, kimyasal reaksiyonlarda maddenin tam sayılarla belirlenen oranlarda tepkimeye girdiğini gösterdi ve dolayısıyla, maddelerin atom denen sayılabilir ama bölünemez parçalardan oluştuğunu ifade etti. Buna ek olarak, atomların kütlelerini ortaya koyan bir tablo hazırladı.

1869 yılında Rus kimyacı Dmitri Mendeleyev o zaman için bilinen elementleri düzenleyen bir periyodik tablo geliştirdi. J.J. Thomson 1897 yılında elektronu keşfetti. 1911 yılında Ernest Rutherford günümüz atom modelinin temelini teşkil eden yapıyı ortaya koydu: atomun, kütlesinin büyük bir kısmını oluşturan bir çekirdek ve bu çekirdek etrafında dönen elektronlardan oluşmaktadır. Rutherford çekirdeği oluşturan pozitif yüklü parçacığa proton adını verdi.

1932 yılında James Chadwick nötronu (adı, elektrik yükü 0 olduğundan, yani nötr olduğundan, nötron olmuştur.) buldu ve bu sayede 1935'te Nobel Fizik Ödülü'nü aldı. Daha sonra kuantum teorisi doğrultusunda Niels Bohr, Bohr atom modelini ortaya attı ve elektronların belli yörüngelerde bulunabildiğini ve bunun Planck sabiti ile ilgili olduğunu ifade etti. Bohr'un modelinin üzerinde, daha sonraki deneylerde bulunanlarla örtüşmesi için birçok ekleme ve çıkarma yapıldı. Bohr modelinin "yamalı bohça" lakabını alması bundan ileri modelini yapmıştır.

Atomun Yapısal Özellikleri


Niels Bohr'un modeli ise modern atom teorisine en yakın modellerinden biridir. Bohr'a göre elektronlar çekirdeğin çevresinde rastgele yerlerde değil, çekirdekten belirli uzaklıklarda bulunan katmanlarda döner. Bohr da tasarladığı bu modelle Nobel ödülüne de lâyık görülmüştür.

Atomun yapısını açıklayan ve bugün için kabul edilen son teori Kuantum Atom Teorisi'dir. Kuantum Atom Teorisi'ne göre atom modeli Bohr atom modelinden farklıdır. Bohr Atom Modeli'ne göre atomun merkezindeki çekirdeğin etrafında elektronlar çember şeklindeki yörüngelerde dolanmaktadırlar. Her bir çember yörünge belli enerji seviyesine sahiptir. Yörüngeler arası elektronik geçişler atomun renkli görünmesine neden olur. Ancak belli bir zaman sonra Bohr atom modelinin birçok spektrumu açıklayamadığından yetersizliği ortaya çıkmıştır.

Kuantum Atom Modeli'ne göre ise atomun merkezinde bulunan çekirdeğin etrafındaki elektronlar belli bölgelerde yani orbitallerde bulunurlar. Belli enerji seviyelerine sahip orbitaller atomu oluşturan küresel katmanlarda bulunur. Portakal kabuğu şeklinde iç içe geçmiş küresel katmanlardaki orbitallerin belli şekilleri ve açıları(yönelmeleri) mevcuttur. Orbitallerin bulunduğu katmanların enerji seviyelerinin başkuantum sayısı belirler. n = 1,2,3,. . .gibi tam sayılarla ifade edilir. Orbitallerin şeklini ise l yan kuantum sayıları belirler. l = 0(s), 1(p), 2(d),. .(n-1) e kadar değerler alır. Orbitallerin doğrultularını(açılarını) veren ml yan kuantum sayısı ml=-l. . .0. .+l değerlerini alır. Elektronların spini gösteren ms kuantum sayısı da +1/2 veya -1/2 değerlerini alabilir.

Bir atomun çapı, elektron bulutu da dahil olmak üzere yaklaşık 10^{-8} cm civarındadır. Atom çekirdeğinin çapı ise 10^{-13} cm kadardır. Atomlar, boyutlarının görünür ışığın dalga boyundan çok küçük olması sebebiyle optik mikroskoplarla görüntülenemezler. Atomların pozisyonlarını belirleyebilmek için elektron mikroskobu, x ışını mikroskobu, nükleer manyetik rezonans (NMR) spektroskopisi gibi araç ve yöntemler kullanılır.

Yalnız elektronlar çekirdek çevresinde ancak belirli enerji seviyelerine sahip yörüngelerde dönerler, konumları ancak bir olasılık fonksiyonu ile ifade edilebilir. Elektronlar çekirdeğin etrafında bulutsu bir şekildedir.

Atom Altı parçacıklar

Atom sözcüğü her ne kadar “daha küçük parçacıklara bölünemeyen” gibi bir anlam taşısa da, çağdaş bilimde atom “atomaltı parçacıkların birleşimi” olarak tanımlanır. Atomdaki üç temel parçacık elektron, proton ve nötrondur. Bütün elementlerin atomlarında bu üç parçacık mutlaka bulunur; tek istisnası hidrojen-1 atomudur ki bu atomda nötron yoktur. Ayrıca herhangi bir hidrojen katyonunun elektronu da yoktur. Bundan dolayı hidrojen-1 atomunun katyonuna proton da denir.
Helyum atomunun sadeleştirilmiş haliyle atom modeli: İki protondan (kırmızı) ve iki nötrondan (yeşil), ayrıca etrafında dönen (sarı) elektronlar.

Negatif yüklü olan elektron, bu parçacıklar arasında 9.11−31 kg ile en hafif olanıdır. Boyutlarının ölçümü mevcut tekniklerle mümkün değildir. Proton pozitif yüklüdür ve kütlesi, 1.6726−27 kg, yani elektronun kütlesinin 1836 katıdır. Protonun kütlesi, atomdaki bağlanma enerjisine göre değişiklik gösterip azalabilir. Nötron ise yüksüz bir parçacıktır ve kütlesi 1.6929−27kg’dır. Nötron ve protonların boyutları, her ne kadar yüzeyleri tam olarak tanımlanamasa da, birbirlerine yakın değerdedir.

Standart modele göre, proton ve nötronlar kuark adı verilen temel parçacıklardan oluşurlar. Kuarklar bir çeşit fermiyondur ve maddenin iki temel bileşeninden (diğer bileşen leptondur) biridir. Her biri +2/3 veya -1/3 yüklü olan altı çeşit kuark vardır. Protonlar iki yukarı kuark bir tane de aşağı kuarkdan oluşur. Böylece yükü " 2.(+2/3) + 1.(-1/3)= +1 ", yani pozitif olur. Nötronlar ise iki aşağı kuark bir de yukarı kuarktan oluşur ve " 1.(+2/3) + 2.(-1/3) = 0 " sonucu yüksüz olurlar. (Bu hesaplarda +2/3 yukarı kuark, -1/3 ise aşağı kuarkları gösteriyor). Bileşimlerindeki bu farklılık yüklerinin yanı sıra kütlelerinin de değişik olmasına neden olur. Kuarkları, gluonlar aracılığıyla, güçlü çekirdek kuvveti bir arada tutar. Gluon, fiziksel kuvvetleri sağlayan gauge bozonlarından biridir.

Çekirdek


Bir atomdaki bütün Proton ve Nötronlar, atomun boyutuna kıyasla çok küçük bir alana sahip olan çekirdektedir. Proton ve nötronun ikisi birden nükleon olarak adlandırılır. Bir çekirdeğin yarıçapı, toplam nükleon sayısı A olan bir atomda \begin{smallmatrix}1.07 \cdot \sqrt[3]{A}\end{smallmatrix} fmdir. Nükleonları "residual strong force" adı verilen kısa menzilli bir çekici güç bir arada tutar. Bu kuvvet 2.5 fmden daha kısa uzaklıklarda, pozitif yüklü protonların birbirlerini itmelerine neden olan elektrostatik güçten çok daha güçlü bir kuvvettir. Bir atomdaki proton sayısına atom numarası denir. Bir elementin bütün atomlarındaki proton sayısı aynıdır. Örneğin demirin atom numarası 26’dır ve dolayısıyla 26 proton bulunduran bütün atomlar demir elementine aittir. Bir elementin atomları arasında nötron sayısı farklılık gösterebilir. Farklı nötron sayılarına sahip aynı element atomlarına izotop denir. Nötron sayısının proton sayısına oranı çekirdeğin kararlılığını belirler.

Nötron ve protonlar farklı fermiyon türleridir. Kuantum mekaniğinin kurallarından Pauli dışarlama ilkesine göre iki benzer fermiyon aynı zaman içinde aynı kuantum durumunda bulunumaz. Yani her proton ve nötron farklı bir yerde bulunmalıdır. Bu yasak, aynı kuantum durumda bulunan bir proton ve nötron için geçerli değildir.

Barındırdığı nötron ve proton sayılarının çok farklı olduğu bir çekirdek, radyoaktif bozunmaya uğrayıp daha düşük bir enerji seviyesine geçerek nötron ve proton sayılarını birbirine yakın değerlere çeker. Birbirine yakın sayıda proton ve nötron içeren çekirdekler radyoaktif bozunmaya karşı daha kararlıdır. Ancak atom numarası arttıkça, protonların birbirlerine uyguladıkları elektrostatik itme kuvvetleri artacağından, protonlar arasına girerek bu itmeleri azaltan nötron sayısı giderek çoğalır. Bunun sonucunda atom numarası 20’nin üzerinde (20, kalsiyumun atom numarasıdır) nötron ve proton sayıları eşit kararlı çekirdekler bulunmaz. Atom numarası arttıkça, kararlı bir çekirdek için gerekli olan nötron/proton oranı 1.5’e doğru kayar.
İki protonun füzyona uğrayarak bir nötron ve bir protona dönüşmesini gösteren bir çizim. Füzyon sonucunda pozitron(e+) ve elektron nötrinosu salınır.

Atom çekirdeğindeki proton ve nötron sayıları değiştirilebilse de bu çok büyük bir enerji gerektirir ve bu olay sonucunda, çekirdeğin değişmesi için emilen enerjiden daha fazla enerji dışarı salınır. Çekirdeğin daha az sayıda nükleon içeren çekirdeklere bölünmesine fizyon denir. Birden fazla çekirdeğin birleşerek daha çok nükleon içeren çekirdeklere dönüşmesine ise nükleer füzyon denir ve füzyonun gerçekleşmesi için gerekli olan enerji, nükleer fizyon için gerekli enerjiden çok daha fazladır. Yine füzyon sonucunda ortaya çıkan enerji, fisyonun ortaya çıkardığı enerjiden de fazladır. Yıldızlardaki muazzam enerji salınımının kaynağı füzyondur. Düşük enerjili yıldızlarda küçük atom numaralı çekirdekler (hidrojen, helyum), yüksek enerjili yıldızlarda ise daha büyük atom numaralı (karbon, oksijen) çekirdekler füzyona uğrar. Yıldızdaki çoğu çekirdek demire dönüştüğünde, demirin füzyonu için gerekli yüksek enerji sağlanamadığından yıldız kütlesine göre bir beyaz cüce, kızıl dev veya kara delik dönüşür.

Fisyon


Fisyon, kütle numarası çok büyük bir atom çekirdeğinin parçalanarak kütle numarası küçük iki çekirdeğe dönüşmesi olayıdır. Fisyon reaksiyonlarında radyoaktif elementler kullanılır ve tepkimeler için bir ilk enerjiye (aktiflenme enerjisi) ihtiyaç vardır. Reaksiyon sonucunda kararsız çekirdekler ve nötron oluşur. Oluşan nötronların her biri yeni bir uranyum atomu ile tepkimeye girer. Bu esnada açığa çıkan nötronlar ortamdan uzaklaştırılmazsa tepkime zincirleme olarak devam eder.

Fisyon reaksiyonları kontrollü olarak gerçekleştirilmelidir. Eğer reaksiyonlar kontrol altına alınmazsa açığa çıkan enerji büyük bir patlama oluşturur. Buna nükleer bomba ya da atom bombası denir. Bu olayda büyük miktarda enerji açığa çıkar. Bölünme tepkimeleri atom bombalarının yapımında ve nükleer santrallerde enerji üretiminde kullanılır.

Örneğin, Uranyum-235 nötron bombardımanına tutulur. Bombardımanda uranyum mevcut nötronlarından birini bile kaybetse kararsız bir hâl alır ve bu tepkime zincirleme reaksiyona girerek madde kendini parçalar. Ardından baryum 142 ve kripton 91'e dönüşür. Bununla birlikte üç nötron salar ve yüksek miktarda gama ışıması yapar. Bu yaklaşık 25.000 ton kömürün enerjisine eşittir. Fisyon tepkimelerinde açığa çıkan enerji nükleer reaktörlerde kontrollü olarak kullanılarak enerji elde edilebilir. Ayrıca açığa çıkan alfa ve gama ışınları bilimsel deneylerde kullanılır.

Atom

Bir elementin kimyasal özelliklerini taşıyan en küçük parçasına atom denir. Evrende bilinen bütün maddeler (kozmik madde, yüksek enerjili madde ve anti madde hariç), pozitif yüklü bir çekirdek ve etrafında dönen negatif yüklü elektronlardan oluşan yaklaşık 100 farklı atomdan meydana gelmektedirler. Atomun çekirdeği ise nükleon olarak adlandırılan ve elektronlara göre yaklaşık 2000 kat daha ağır olan, artı yüklü proton ve yüksüz nötronlardan oluşmaktadır. Dolayısıyla bu üç parçacık, etrafımızdaki sonsuz çeşitlilikteki maddenin temel yapı taşlarıdır. Şu andaki bilgilerimiza göre elektronlar, kendilerini oluşturan alt parçacıklar olmadığından temel parçacık olarak kabul edilirler. Nükleonlar ise, elektronun "-1" yüklü olduğu varsayıldığında, "+2/3" veya "-1/3" elektrik yükünde olan quark adı verilen üç alt parçacıkdan oluşmuşlardır.

Molekül: Doğada atomlar genellikle daha kararlı enerji seviyelerinde bulunmak amacıyla yörüngelerinde bulunan elektronları başka atomlarla paylaşırlar. Atomların bir araya gelmesi ile moleküller oluşur. Bir elementte aynı cins atomlar tek olarak veya moleküller halinde biraradadır.

Kimyasal Tepkime: İki veya daha fazla sayıda madde biraraya geldiğinde, moleküllerdeki atomların aralarında yeniden düzenlenmesine kimyasal tepkime denir. Bu sırada elektronların paylaşılması da değişir. Kimyasal tepkimelerin bir özelliği, ilgili atomların çekirdeklerinde bulunan parçacık sayısının tepkime sırasında değişmemesidir.

Çekirdek Tepkimesi:
Kimyasal reaksiyonların aksine atomların çekirdeklerinde bulunan parçacıkların kendi aralarında veya dışardan gelen bir etki sonucunda değişimleri sonucunda çekirdek tepkimeleri oluşur. Çekirdek tepkimesi sonucunda eğer proton sayısı değişiyor ise farklı bir elemente ait bir atom oluşmuş olur.

Fisyon (Çekirdek Parçalanması):


Fisyon Olayı



Fisyon bir nötronun, uranyum gibi ağır bir element atomunun çekirdeğine çarparak yutulması, bunun sonucunda bu atomun kararsız hale gelerek daha küçük iki veya daha fazla farklı çekirdeğe bölünmesi reaksiyonudur. Dolayısıyla Fisyon, bir çekirdek tepkimesidir. Parçalanma sonucunda ortaya çıkan atomlara fisyon ürünleri denir. Bunların bazıları radyoaktiftir. Bir nötron yutulması ile başlayan fisyon tepkimesi sonucunda, büyük miktarda enerji ile birlikte, birden fazla nötron ortaya çıkar. Çekirdek tepkimeleri sonucunda açığa çıkan enerji, kimyasal tepkimelere göre yaklaşık bir milyon kat düzeyinde daha fazladır.

Zincirleme Reaksiyon: Fisyon sonucunda ortaya çıkan nötronların, ortamda bulunan diğer fisyon yapabilen atom çekirdekleri tarafından yutularak, onları da aynı reaksiyona sokması ve bunun ardışık olarak tekrarlanmasıdır. Kontrolsuz bir zincirleme reaksiyon, çok çok kısa bir süre içinde çok büyük bir enerjinin ortaya çıkmasına neden olur. Atom bombasının patlaması bu şekildedir. Nükleer santrallarda ise zincirleme reaksiyon kontrollu bir şekilde yapılır. Bu kontrolun kaybedilerek nükleer yakıtın bir bomba haline dönüşmesi fiziksel olarak olanaksızdır.



Füzyon (Çekirdek Birleşmesi):
Hafif radyoaktif atom çekirdeklerinin birleşerek daha ağır atom çekirdeklerini meydana getirmesi olayıdır. Füzyon tepkimesinde ortaya çıkan sıcaklık çok daha büyüktür. Güneşteki tepkimeler bu gruba girer.

Füzyon

Nükleer füzyon, nükleer kaynaşma ya da kısaca füzyon; iki hafif elementin nükleer reaksiyonlar sonucu birleşerek daha ağır bir element oluşturmasıdır.[1] Çekirdek tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

Bu işlemle oluşturulabilecek en ağır element demirdir.[1] Reaksiyona giren çekirdekler -atom numarası 1 olan hidrojen veya izotopları deuterium ve tritium gibi- düşük atom numarasına ait elementlerde ortaya çok büyük miktarda enerji çıkar.[1] Nükleer füzyonun bu devasa enerji potansiyelinden ilk olarak, 2. Dünya Savaşı'nı takip eden yıllarda, hidrojen bombası olarak da bilinen termonükleer silahların üretiminde istifade edilmiştir.[1]

Füzyon tepkimeleri Güneş'te her an doğal olarak gerçekleşmektedir. Güneş'ten gelen ısı ve ışık, hidrojen çekirdeklerinin birleşerek helyuma dönüşmesi ve bu dönüşüm sırasında kütle kaybı karşılığı enerjinin ortaya çıkması sayesinde meydana gelmektedir. Kütle kaybının karşılığı enerjinin büyüklüğü Einstein'in ünlü E = mc² formülüyle rahatlıkla hesaplanabilir.

Füzyondan enerji kaynağı olarak yararlanılması

Füzyon sonucunda açığa çıkan bağlanma enerjisini kullanmaktır. Ama bunu denetim altında oluşturmak oldukça zor bir iştir. Çünkü çekirdekler pozitif elektrik yükü taşır ve birbirlerine yaklaştırmak istenildiğinde çok şiddetli bir şekilde birbirlerini iterler. Bunların kaynaşmasını sağlamak için aralarındaki itme kuvvetini yenebilecek büyüklükte bir kuvvetin kullanılması gerekmektedir. Gereken bu kinetik enerji, 20-30 milyon derecelik bir sıcaklığa eşdeğerdir. Bu olağanüstü bir sıcaklıktır ve kaynaşma tepkimesine girecek maddeyi taşıyacak hiçbir katı malzeme bu sıcaklığa dayanamaz. Fisyondan farklı olarak; çekirdeklerin birleşmesi olayına füzyon denir.Fisyona oranla füzyon başına daha az, küçük ve hafif olduklarından;hafif bir çekirdeğin füzyonu,aynı kütlede ağır çekirdeğin parçalanmasından çok daha fazla enerji açığa çıkar. Dengelenmediği takdirde açığa çıkan enerji patlama noktsına kadar hızla yükselir ve ardından nükleer bir patlama meydana gelir.

Faydalı füzyon reaksiyonları

Füzyon (Çekirdek Birleşmesi): Hafif radyoaktif atom çekirdeklerinin birleşerek daha ağır atom çekirdeklerini meydana getirmesi olayıdır. Füzyon tepkimesinde ortaya çıkan sıcaklık çok daha büyüktür. Güneşteki tepkimeler bu gruba girer.

        Faydalı füzyon reaksiyonları

            - D-T (döteryum-trityum) füzyon reaksiyonu

            - D-D (döteryum-döteryum) füzyon reaksiyonu

        on için sağlanması gereken şartlar

            - Sıcaklık

            - Hapsetme

            - Lawson Kriteri

        Plazmanın Hapsedilmesi Metotları
        Magnetik Hapsetme
        Eylemsiz Hapsetme

    Füzyon Tepkimeleri / Reaksiyonları


    Bir füzyon reaksiyonundan öngörülen enerjinin elde edilmesi için

        reaksiyon düşük sıcaklıkta oluşmalı
        yüksek enerji açığa çıkmalı
        büyük bir tesir kesitine sahip olmalıdır
        tepkimeye girecek olan maddeler kolayca bulunabilmelidir
        plazmanın yeniden ısıtılması için yüklü parçacıklar elde edilemli
        farklı etkileşmeleri önlemek için enerjisi yüksek olan nötronlar açığa çıkmamalıdır

    D-T Reaksiyonu

    Döteryum bir proton ve bir nötrondan oluşan hidrojen çekirdeğinin bir izotopudur. Bilindiği gibi izotop, proton sayısı aynı fakat nötron sayısı farklı olan atom çekirdekleri için kullanılan bir tanımdır. Simgesel olarak 12H şeklinde gösterilir.

    Trityum bir proton ve iki nötrondan oluşan Hidrojen çekirdeğinin bir diğer izotopudur. Simgesel olarak 13H şeklinde gösterilir.

    Döteryum- Trityum füzyon tepkimesi aşağıdaki şekilde meydana gelir.

    Bu tepkimenin özellikleri :

        Büyük tesir kesitine sahiptir

        Gerekli olan sıcaklık 4.4 keV’dir. 1 eV yaklaşık olarak 11600 K’ dir. Yaklaşık olarak bu sıcaklık değeri 51040000 K’ lik bir sıcaklık demektir.
        Ortaya çıkan enerji 17.6 MeV gibi yüksek bir enerjidir.
        3.5 MeV’ lik enerjiye sahip olan Helyum çekirdeği başka bir deyişle alfa parçacığı plazmanın yeniden ısıtılması için kullanılır.

    D-T reaksiyonunun gerçekleştirilmesinde aşağıdaki problemlerle karşılaşılır.

        Trityum kolayca bulunan bir yakıt değildir. Oldukça ender bulunan Lityum çekirdeği izotoplarından aşağıdaki reaksiyonlar sonucu elde edilir.

    Bu tepkimeler füzyon reaktörünü çevreleyen bir lityum tabakası ile nötronların etkileşmesi sonucu elde edilir ve ürünler direk olarak tepkimeye sokulabilir.

        D-T reaksiyonu sonucu açığa çıkan enerjisi yüksek olan nötronların rekatör ile etkileşmeye girerek reaktöre zarar vermesi maliyetin artmasına neden olur.

    D-D Reaksiyonu

    İki döteryum çekirdeğinin direk olarak reaksiyona girmesiyle meydana gelen füzyon reaksiyonudur. Ve aşağıda gösterildiği şekilde meydana gelir.

        D-T reaksiyonundan daha düşük bir tesir kesiti yani reaksiyon oranına sahiptir. Ve dolaylı olarak bu olumsuz bir durumdur.
        48 keV gibi yüksek bir sıcaklıkta meydana gelir.
        Füzyon reaksiyonu başına açığa çıkan enerji yaklaşık olarak 4 MeV kadardır.
        Yakıt deniz suyundan kolayca elde edilebilir.

    D-D ve D-T füzyon reaksiyonlarının kıyaslanması

        D-T reaksiyonunun tesir kesiti D-D reaksiyonuna kıyasla daha büyüktür.
        D-T reaksiyonu daha düşük sıcaklıkta meydana gelir.
        Ticari olarak düşünülen füzyon tepkimesi maliyeti düşük olduğundan D-D reaksiyonudur.

    Lawson Kriteri

        Plazmanın dağılmadan hapsedilmesi için gerekli zamanın ve plazma yoğunluğunun ilişkisini tanımlar
        Plazmanın dağılmaması için “Dışarı Çıkan Güç” =”İçeri Giren Güç” olmalıdır.
        D-T plazması için

    nd döteryum iyonları yoğunluğu ve nt trityum iyonları yoğunluğu toplamının ne elektron yoğunluğu toplamına eşit olması gerekir.

    nD+nT=ne ve nT=nD olmalıdır. Bu son eşitlik plazmanın toplam elektriksel yük açısından nötr olması gerekliliğinden sağlanması gerekir,

        Plazma içinde üretilen güce karşı resaksiyonu başlatmak için plazmayı ısıtmakta kullanılan güç dengeli olmalıdır.

    - Eğer her füzyonda E kadarlık enerji üretilirse plazma içinde üretilen füzyon gücü;

    Pfüzyon=(n/2)(n/2)s VE=(n2/4)s E j/s/cm3 olmalıdır bu plazma içinden dışarı çıkan güçtür.

    - Eğer plazma bir T sıcaklığına sahipse toplam enerjisi

    Etermal=(ne+nD+nT)(3/2)kT=3nkT dir.

    Plazma enerjisinde bir t hapsetme süresi boyunca düzenli oranda kaybedilen enerji

    Pkayıp=(3nkT)/t j/s/cm3 ‘dir.

    Bu durumda içeri giren güç ve dışarı çıkan güç için sahip olunan ifadeler

    Pfüzyon>Pkayıp

    ise nt >(12kT)/ (sVE)

    Bu eşitsizlik Lawson Kriteri olarak anılır. Bu ifade plazmanın dağılması için gereken hapsedilme süresini ve hapsedilmesi gereken parçacık sayı yoğunluğunu verir.

        D-T reaksiyonu için nt >3.1020 sn/cm3’dür.
        D-D reaksiyonu için bu değer nt >1022 sn/cm3 mertebesindedir.







Signing of RasitTunca
[Image: attachment.php?aid=107929]
Kar©glan Başağaçlı Raşit Tunca
Smileys-2
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)